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Abstract

A Method of Moments (MoM) model for the analysis of the Linearly Tapered Slot

Antenna (LTSA) is developed and implemented. The model employs an unequal size

rectangular sectioning for conducting parts of the antenna. Piecewise sinusoidal basis

functions are used for the expansion of conductor current. The effect of the dielectric

is incorporated in the model by using equivalent volume polarization current density

and solving the equivalent problem in free-space. The feed section of the antenna

including the microstripline is handled rigorously in the MoM model by including

slotline short-circuit and microstripline currents among the unknowns. Comparison

with measurements is made to demonstrate the validity of the model for both the air

case and the dielectric case. Validity of the model is also verified by extending the

model to handle the analysis of the skew-plate antenna, and comparing the results to

those of a skew-segmentation modeling results of the same structure and to available

data in the literature. Variation of the radiation pattern for the air LTSA with length,

height and taper angle is investigated and the results are tabulated. Numerical results

for the effect of the dielectric thickness and permittivity are presented.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Objectives

The main objective of this work is to develop a Moment Method Model for the

radiation pattern characterization of single Linearly Tapered Slot Antennas (LTSA)

in air or on a dielectric substrate. The geometry of the LTSA is shown in Figure 1.1.

This characterization consists of:

• Finding the radiated far-fields of the antenna,

• Determining the E-Plane and H-Plane beamwidths and sidelobe levels,

• Determining the D-Plane beamwidth and cross polarization levels,

as antenna parameters length (L), height (H), taper angle (a), substrate thickness

(d) and the relative substrate permittivity (_.) vary. The ranges of these parameters

are:

0.25_0 __ L _ 5A0

0.25_o < H < 3_o



2.5deg < a < 9 deg

0.01_0 < d < 0.1_o

1 __ e, __ 10.5

where _o is the free-space wavelength at the operating frequency.

The reason for these choices of parameter ranges will be explained in later sections.

d

z L /_¢ Conductor

H /

Dielectric

Figure 1.1: LTSA Geometry

x

The LTSA geometry which is shown in Figure 1.1, does not lend itself to analytical

solution with the given parameter ranges. Therefore, a computer modeling scheme

and a code are necessary to analyze the problem. This necessity imposes some further

objectives or requirements on the solution method (modeling) and tool (computer

code). These may be listed as follows:
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• A good approximation to the real antenna geometry.

• Feasible computer storage and time requirements.

According to these requirements, the work is concentrated on the development

of e_clent modeling schemes for these type of problems and on reducing the central

processing unit (CPU) time required for the computer code. A Method of Moments

(MoM) code is developed for the analysis of LTSA's within the parameter ranges

given.

1.2 Significance

An antenna is one of the most important components in all communication systems.

With the development of radar during the 1940's, many new antennas have been in-

troduced. The introduction of MoM to electromagnetics made the numerical analysis

of many antennas possible. During the 1970's the developments in microstrip de-

vices and circuits vastly increased the possibility of new antenna structures. Planar

antennas enjoy the possibility of integration with the other parts of the system. In

recent years, the new developments in the ml]limeter wave frequencies has increased

the importance of planar antennas suitable for this frequency range. The tapered slot

antenna is one likely candidate for both microwave and millimeter wave systems. It

can be easily integrated to microstrip circuits with a microstrip-to-slotline transition.

Its radiation characteristics axe also promising. Initial studies on LTSA's were mostly



experimental. In recent years, some approximate analytical and numerical solutions

for LTSA's have been developed, however the validity of the results are restricted by

the choices of the antenna parameters or by the approximation of the real antenna

geometry. Therefore, there is a need for better modeling and characterization of these

antennas.

This work concentrates on rigorous computer modeling of single LTSA's with the

use of MoM. The real antenna geometry is modeled closely for the first time, both the

conducting parts of the antenna and the finite size dielectric region. Earlier modelings

lacked accuracy in either modeling the conductor parts (by assuming a different shape

of the conductors to ease the analysis), or in modeling the dielectric (by assuming

the dielectric support infinite or assuming that it is very thin). The characterization

of the LTSA will provide the researchers and designers in the field with better design

guidelines in the range of the parameters given before. Also, the solution method is

not unique to the problem, the analysis of similar structures may be carried out with

a modification of the computer code for the particular problem.

1.3 Background

The Tapered Slot Antenna was introduced by Gibson [1]. He called it the Vivaldi

Antenna. Since its introduction, its properties have been studied by many researchers

in the field [2]-[12]. The first studies were mostly experimental [2, 3], dealing mostly
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with the characterization of the antenna and derivation of someempirical design

formulas. The usage of the antenna at millimeter wave frequencies as a feed array

element [8], and the integration with the other elements of the system have also been

studied [11, 12].

The first theoretical formulation for the radiation pattern of the antenna has

been provided by R. Janaswamy [4, 6, 7]. In his work, the height of the LTSA (H

in Figure 1.1) was assumed infinite. Assuming also infinitely long antennas, (L __

3_o), enabled him to approximate the fields by those of two infinite cones which can

be analyzed analytically [13]. However, assuming infinite conducting parts for the

antenna leads to incorrect predicted fields if one uses the free-space Green's function in

the application of the Schelkunoff's equivalence principle [14]. Due to this reason, he

approximated the effect of the finite length of the antenna by assuming a conducting

half-space at the end of the antenna, and using the related Green's function.

In the analysis of LTSA's on a dielectric substrate the preceeding assumptions do

not lead to an analytical solution due to the presence of the dielectric. Therefore, for

this part of the analysis, he approximated the antenna taper step-wise, and solved

the eigenvalue problem [15], to determine the aperture field distribution up to a

multiplicative constant in each constant slot-line section [7]. Enforcing the power

conservation principle for each junction yielded the field distribution which in turn

was used to find the fields of the antenna with the same half-space Green's function.

This analysis also assumes an infinitely long structure and the effect of the dielectric is

5



not taken into account when finding the radiated fields using the aperture distribution.

In this early work, it has been found experimentally that the radiation proper-

ties of the antenna improve as the antenna height gets smaller [4, 7]. However, the

summarized analysis is not suitable for the solution of this problem. It also suffers

from the treatment of the dielectric presence. In many applications, [2, 11, 12], the

length of the antenna is less than 3)_0, further restricting the applicability of these

results. Therefore, there has been a need to analyze the problem within parameter

ranges given in Section 1.

Contemporary to our work, attempts have been made to model the antenna by the

MoM [9, 10]. In this work, the antenna has been modeled by the skew-plate geometry

shown in Figure 1.2. The shortcoming of this approximation is the assumption of

differently shaped conductor edges in the distances comparable to the wavelength.

Since the approximated geometry of the antenna has also been utilized in experimental

models, good agreement with measurements has been obtained. Our results [16]

predict different radiation patterns for the real geometry of the LTSA. Also the effect

of the dielectric still needed better consideration, since only low-permittivity (E,), and

very thin dielectric support has been analyzed [10].

In electromagnetic radiation and scattering problems there are two main ap-

proaches: Differential equation (DE) modeling and integral equation modeling [17].

Traditionally, DE models are used in bounded problems and IE models are employed



-- ! I

l
--t--i-_L.._L

Figure 1.2: Skew-Plate antenna

H

in exterior radiation and scattering problems. In DE models, the problem region is

divided into meshes and the unknown is approximated by a function in each cell. The

satisfaction of the boundary conditions at each mesh boundary yields the unknowns

related to the fields. In IE models, the integral equation describing the problem is

obtained first, then, the unknown in the equation is expanded using some basis func-

tions. Weighting of the IE with some weight functions converts the integral equations

to a linear system of equations. Solution for the currents (or unknown in the problem)

is obtained by standard matrix inversion or iterative techniques. By their nature, DE

models are local and IE models are global, and as a result, the matrices obtained

from DE models are large but sparse as opposed to the relatively small and dense

matrices obtained from IE models. DE models are extended to radiation and scatter-
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ing problems in unbounded regions by utilizing the "absorbtive boundary conditions"

[18]. However, since large matrices are obtained using DE models and since the solu-

tion times are on the same order for both of the methods, we have preferred the IE

modeling scheme aud MoM formulation [19, 20].

In IE methods, another recent approach is the Conjugate Gradient Method [21,

22], which has been applied to dielectric scattering, scattering from conducting plates

and wire antenna problems. However, it is not applicable to mixed bodies such as the

dielectric supported LTSA. It has been applied to LTSA's in air and infinite arrays

of LTSA's by Catedra et aJ [23].

1.4 Overview of Report

The report is organized as follows. Chapter 2 presents the formulation of generalized

scattering or radiation from a coated dielectric body problem. In Chapter 3, the

implementation of the method for the LTSA is explained. The modeling approach

for the conducting and the dielectric parts of the antenna with the basis and test

function choices for MoM formulation is given in this chapter. Possible excitation

types for the antenna and the modeling of the source are also discussed in Chapter

3. In Chapter 4, the results and discussion are presented. In section 4.2, favorable

comparison to available data in the literature and to experimental measurements is

made to verify the computational results. The accuracy of the results is checked and



discussed. A parametric study of air LTSA's with changing L, H and a is given

in section 4.3. Conclusions on the behavior of the radiation characteristics of the

antenna with respect to these parameters are drawn. In section 4.4, the effect of

the dielectric thickness and the permittivity on the radiation characteristics of the

antenna are presented. The developed MoM code is explained briefly in Chapter

5. The performance study of the code is also given in this chapter. Finally, the

conclusions and the suggestions for future research are presented in Chapter 6.
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CHAPTER 2

FORMULATION OF THE METHOD

2.1 Introduction

Many important electromagnetic problems involve radiation and scattering from a

dielectric body partially covered with a conductor. This general problem geometry is

shown in Figure 2.1. In this figure, the problem is shown as a scattering problem where

(E i, H i)

rE, H)

_iiiiiiiiiiiii_i _ii!i!iiii_ Conductor

eo, _o

Figure 2.1: Scattering Problem Geometry

(EI,H I) is the incident field and (E,H), the total field in the presence of the scatterer,

is the unknown. The location of the source for (EI,H _) is assumed to be at infinity so
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that (E_,H _) is not effected by the presence of the scatterer. In radiation problems the

same formulation as for the scattering case can be used with only a proper change of

the interpretation of the incident field. In this type of problem, (EI,H _) is the field of

the source (J_,Mi) which is usually on or in the structure and assumed to be known or

approximated. When attempting to solve the problem numerically, a suitable source

model is chosen. As a result of this modeling, some parts of the source model should

also be included as having unknown current distribution. This is the major difference

of the radiation and scattering cases.

Whether it is a scattering or a radiation problem, the analytical solution of the

total fields for Figure 2.1 is very difficult in most cases. When the geometry of the

dielectric body is a canonical one such as a sphere or a slab extending to infinity,

the specific Green's function can be derived in the frequency domain or a series

representation of it may be obtained. However, the solution for the conductor parts of

the structure is still very difficult and is usually carried out by a numerical approach

[24] such as MoM. For example, when the dielectric body is a slab extending to

infinity, the Green's function is easy to derive in the frequency domain [24]. However,

in the solution of the unknown conductor currents by moment method, one encounters

Sommerfeld integrals which are difficult to integrate numerically. When using series

form for the Green's function, the slow convergence is a typical problem.

When the difficulties regarding the Green's function are considered and when the

geometry of the particular problem does not allow these approaches, the only possible

11



way is to use numerical methods [17].

In order to solve the general problem of Figure 2.1 numerically, the governing

integral equations for the conductor and dielectric regions are obtained. This is

explained in section 2.2 These equations are then solved numerically using MoM.

This procedure is detailed in section 2.3. In the remaining sections of this chapter,

the dielectric body will be assumed to have the permeability, #0, of free-space, which

is the case for most antenna problems.

2.2 Derivation of the Integral Equations

Referring to Figure 2.1, the conducting parts of the structure ,So, can be modeled

by applying Schelkunoff's equivalence [14] principle. According to this principle, the

total tangential rid& determine the equivalent electric and magnetic surface current

densities,

J. = n x H (2.1)

M° = - nxE

-- 0 (2.2)

which are introduced on the surfaces of the conductor; both bottom and top. Here,

n is the unit outward normal to the conducting body. M, is equated to zero in

(2.2) since a perfect conductor assumption is made and on a perfect conductor the

12



tangential electric field is zero. When J, and M° are introduced on the conductor,

the conductor can be removed and the currents J,, Mo can be considered to radiate

in tree-space [25]. If the conductor is very thin, equivalent currents Jo and M, might

be considered as the vector sum of the currents on the top and bottom surfaces.

Throughout the analysis this assumption will be made for the conductor regions.

In the dielectric region, Va, Maxwell's equations may be written as:

V x E = -jw_oH (2.3)

V×H

(2.4)

Subsequently, (2.4) can be rewritten as,

V × H = jcocoE + Je (2.5)

where

J, =  o)E (2.8)

Equation (2.5) can be interpreted as a Maxwell's equation in tree-space with a current

source J, located at the position of the dielectric part of the structure. Therefore,

one can replace the dielectric region with the equivalent volume electric polarization

current density Je and consider the whole problem in tree-space [20, 26, 27, 28, 29].

The equivalent problem is shown in Figure 2.2.

13



(Ei, H i

(E,H)

Js

EO ' [J'O

Figure 2.2: Equivalent Problem

On the conductor regions, the total tangential electric field intensity is zero. There-

fore, the following equation must be satisfied on the conductor surfaces.

(E' + E" + E'),..= 0 (2.7)

In equation (2.7), E _, E °, and E e are the fields radiated by the sources J_, Jo and

Je, respectively.

In the dielectric region, Vd, the condition

E ° + E _ + E _ =

(2.8)

should be satisfied.

Equation (2.8) is merely the statement of the equality of the total fields in which

(2.6) has been used to obtain the relation with the equivalent polarization current

density, Je, in the dielectric region.

14



All the fields produced by the equivalent sources and the source can be expressed

in terms of the free-space dyadic Green's function as

where,

&nd,

E --/v J" _dV (2.9)

= (i +  vv)g0 (2.10)

e p(-JkoR) (2.11)
g°= R

is the unit dyad, R is the distance between the source and the field points, R = [r -

r'l, where r and r' are position vectors to the field and source points, respectively, and

k0 is the free-space wavenumber. The V operator operates on unprimed coordinates

which are the field coordinates. For surface current densities, equations (2.9) through

(2.11) still can be used with surface integrals over source current densities replacing

the volume integrals.

As a result, equations (2.7) and (2.8) are the two integral equations that must be

satisfied by the unknown conductor current density J, , and the equivalent volume

polarization current density Je.

Equation (2.7) states that the total tangential electric field intensity on a con-

ductor surface is zero. Therefore, if a test source J,,, is placed in the conductor, its

reaction I25] with all other sources, (J_, J,, J,), will be zero. In equation form this

15



can be written as:

/s, Jo . E"*dS + /s J_ . E"*dS + /v J, . E'_dV =

/s. J'_ "E'dS + Is,. J'_ "E'dS + L,. J_ "E'dS = 0 (2.12)

where Si and S,_ are the regions in which Ji and J,,, are nonzero. The field E" is the

field radiated by J,,, in free-space.

Equation (2.12) is a reaction integral equation for the two unknown current den-

sities J° and J,. Satisfaction of this equation ensures that these currents have the

proper reaction with a test source on the conductor surface. However, this does not

insure the satisfaction of the field equality equation, (2.8), in the dielectric region.

In order to incorporate the effect of the dielectric, we will multiply (2.8) by a vector

weighting function W,_, and integrate over Vd, to obtain,

(E ° + E* jw(;-- Co) )" W,,,dV = - El. W,,dV (2.13)

Let us rewrite equations (2.12) and (2.13) as:

fsJ°.E'_+/vJ,.E" = -fsJ,.E '_

= --Vm (2.14)

J* W,,_dV Iv, E_ W,,,dVv (E + E" Co)). = - •

(2.15)
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Equations (2.14) and (2.15) contain the unknown current densities in their kernels

and are the governing reaction integral equations for the problem of Figure 2.1. These

two coupled integral equations must be solved to find the unknown conductor and

dielectric polarization current densities J, and Je, respectively. The equations (2.14)

and (2.15) must hold for any arbitrary test function Jm and Win. However, in order to

solve these equations numerically with MoM, N distinct J,_ and M distinct W,_ will

be used to reduce the equations to a square matrix equation, where N and M are the

number of expansion functions for the conductor and dielectric regions, respectively.

It is worthwhile to mention here that, although the reaction concept is utilized to

obtain (2.14), it is essentially an inner product of the integral equation (2.7) by the

test functions Jm similar to the dielectric equation (2.8) and its inner product (2.15).

2.3 Solution of the Integral Equations by the Method of

Moments

In order to solve equation (2.14) and (2.15) by MoM, the unknown currents are

expanded as follows:

N

Jo-- _ I_,,3,,_ (2.16)
n----1

N+M

J,: _ I,_J_ (2.17)
n=N+l

The total conductor surface current Jo is expanded by using the basis functions

17



J_. In the dielectric, the volume polarization current density is similarly expanded

using the basis functions J_. In (2.16) and (2.17) J_ and J,,_ have known forms

and In and In are the unknown multiplicative constants to be determined. In

general, since the conductor current is a surface current density, J_ should contain

two orthogonal components, whereas J,n is a volume current density and should

contain three.

Substituting (2.16)and (2.17)into (2.14)and changing the order of integration

and summation gives,

N N+M

n=l c n=N+l

= - fs, Ji" E"dS (2.18)

In (2.18), since J_,J_ and E = are known, the integrals may be evaluated leaving

a linear equation in N + M unknowns. Since E'* is the field of the test sources which

are placed on the conductor, using N test sources in (2.18) gives N equations in

N + M unknowns.

Similarly, when (2.16) and (2.17) are substituted into (2.15) we obtain,

N

1.(fv,E". w.av)+
n----I

N+M

n=N+l

JClrL

M,_,o)) =
-V_,

= - fv, El" W=dV (2.19)
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where E"_ and E _ are the fields produced by the surface and the volumetric basis

functions (currents), J,,_ and J_, respectively. When M weighting functions are used

in (2.19), M equations in N + M unknowns result. Together with those obtained

from (2.18) a square matrix of order N + M is obtained.

Equations (2.18) and (2.19) represent a linear system of equations which can be

written compactly,

N+M

_., I,,Z,,_, = V,,, for m = 1,..., N + M (2.20)
n=l

or in the matrix form as,

ZI= V (2.21)

where, Z is the square impedance matrix, I is the current vector, and V is the

excitationor voltage vector,and,

,N+M

(2.22)

(2.23)

After the matrix dements, z_j, are calculated using numerical integration, the

unknown current coeflldents are solved by standard inversion or iteration procedures.

Until this point the method is general in the sense that, neither the basis functions

for the conductor and the didectric, nor the testing (weighting) functions for them
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are specified. The difficulty or the complexity of the matrix element evaluation and

the computation time for them are heavily influenced by these choices. The chosen

basis and testing functions and their impact on the implementation of the method

for LTSA's will be explained in the next chapter.
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CHAPTER 3

IMPLEMENTATION OF THE METHOD FOR

LINEARLY TAPERED SLOT ANTENNA

3.1 Introduction

In this chapter, the implementation of the method explained in chapter 2 will be given.

In order to apply the formulation of the previous chapter to the antenna geometry of

Figure 3.1, the conducting parts of the antenna should be approximated by a surface

modeling scheme. The definitions of the unknown currents on the conducting surfaces

d

H

Wf

L f Conductor

/

Dielectr_

Figure 3.1: LTSA Geometry

x
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will complete this part of the analysis. The next step is to approximate the dielectric

geometry and define the unknown currents for the dielectric region. When the test

functions for both the conducting and the dielectric parts are determined, the matrix

elements can be calculated.

The approximation of the conducting and dielectric parts also involves the mode]-

ing of the source. Depending on the source modeling, unknowns related to the source

may be included in the matrix equation.

After the matrix equation is obtained by calculating the matrix elements and the

right-hand side vector, the solution of this equation gives the unknowns. Once the

unknown currents are calculated, any necessary information of the antenna such as

the far-field radiation pattern, field distribution in the dielectric, input impedance,

can be calculated easUy.

3.2 Conductor Modeling

Possible choices for modeling the conductor surfaces are triangular sectioning [30, 31],

polygonal plate modeling [32, 33, 34], or a combination of these with rectangular sec-

tioning [35, 36]. As mentioned in chapter 2, the complexity of the matrix element

calculation depends on this choice. Although triangular and polygonal plate modeling

schemes are better in conformity to the surface than rectangular sectioning,the num-

ber of integrations involved in calculating the matrix elements is larger. Triangular
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sectioningis bestsuitedfor modelingthe LTSA geometry,howeverthe integrationsin

the matrix elementcalculationshaveto be carriedout on a triangular domain which

is costly and difficult to do numerically. Polygonalplate sectioningis also suited to

modeling the LTSA geometry. The difficulty in matrix element calculation however is

worse than both the triangular and rectangular sections. The matrix element calcula-

tion integrations are four-fold in this case. Rectangular sectioning gives the simplest

expressions for the matrix elements and is the least costly in terms of the computa-

tion time. Hence, whenever applicable, rectangular sectioning offers simplicity and

computational savings. Referring to Figure 3.1, the range of the taper angle for useful

antennas was determined earlier [4] to be less than 9 degrees. This small taper angle

allows a good approximation with the unequally sized rectangular segmentation of

Figure 3.2.

_ iI I

I I I
I I

------ l- 4 --_

I

I I
"! 1"

I
"I

I I I
I I I
I I I
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Figure 3.2: Unequal Size Rectangular Sectioning
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3.3 Conductor Basis and Test Functions

The conductor current basisfuctions are chosenas overlappingpiecewisesinusoidal

functions. The currenton theith segmentof the conductorconsistsof two monopoles.

The current starts on the segment i and extends to the next segment. Each segment

carries a monopole current which has components J,_ and Jffi_ defined by,

1 _lx, sin[ko(h,- zl)] + I2isin(kozi)_ (3.1)Jz/ ----az_

2w_ [, sin(koh_) J

l { II_sin[ko(w_ - z_)] + l, lsin[ko(w, + z_)] } (3.2)h_+l sin(2_w2)

where as and a= are the unit vectors in the directions of z and z, respectively, 2wi is

the segment width, and hi is the segment height. It1 and 12i are the terminal currents,

and take the values either 0 or I. zl and z_ are the local coordinate variables of the

monopo]e measured from the bottom and the center of the monopo]e, respectively

(See Figures 3.4 and 3.5). The z component of the monopo]e current extends hi+a

along z, to provide current overlap for the successive unequal-size rectangular sections.

These monopole currents are piecewise sinusoidal in the current direction and constant

transverse to it, and are the same as those in [25].

The combination of the two neighboring segment currents creates one unknown

for the conductor. This combination and the resulting current distribution is shown

in Figure 3.3. As seen from Figure 3.3, the conductor currents are continuous in

the current direction since every surface dipole current overlaps a neighboring one.
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Figure 3.3: Piecewise Sinusoidal Conductor Currents a) Segment geometry b) Distri-

bution in Current Direction c) Distribution in Perpendicular Direction

The current is a constant with respect to the coordinate perpendicular to the cur-

rent direction. The continuity of the current is a desired property for two reasons.

Firstly, the current on the conductor is continuous, therefore, using continuous basis

functions allows a good approximation, especially where the current is rapidly vary-

ing. Secondly, a discontinuous current approximation creates llne charges where the

current is discontinuous. Since this would be a fictitious line charge that shouldn't
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be present it might lead to erroneous results for antenna currents and therefore other

calculated results.

The test functions to complete the application of (2.18) are chosen the same as the

basis functions. This is called Galerkln formulation. For this specific choice of basis

and test functions, the matrix elements for the conductor-conductor interactions be-

come mutual impedances between the respective currents. These mutual impedances

are obtained by summing up the four monopole-to-monopole mutual impedances [25].

With the rectangular sectioning and the defined current distributions, there are only

two types of monopole-to-monopole mutual impedance calculations. These are par-

allel and perpendicular cases which are shown in Figure 3.4 and Figure 3.5. With

this choice of rectangular sectioning and current definition the monopole-to-monopole

mutual impedances of Figure 3.4 and Figure 3.5 were earlier calculated by integrating

the mutual impedance of line currents [36, 37, 38, 39] over the monopole surfaces.

The simplest formula for the parallel case is reported in [40]. For the perpendicular

case, a one dimensional integral formula for the mutual impedance between a dipole

and a monopole is reported in [41]. None of these earlier formulations is valid for

unequally sized parallel or perpendicular monopole-to-monopole interactions. The

direct integration for the surface currents leads to faster and easier evaluation of ma-

trix elements even in the general case of unequal size segments. Simple formulas for

the mutual impedances of the two cases shown in Figure 3.4 and Figure 3.5 have

been derived and reported in [42]. The derivations and the resulting expressions will
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not be repeated here, however, it is worthwhile to mention that the parallel case

contains only one-dimensional integrals said the perpendicular case is in closed form,

containing exponential integrals only. It is these simple formulas that led to the

choice of unequal size rectangular sectioning of the conductor. Tremendous savings

of computation time makes possible the use of finer grid sizes and therefore better

approximations of the antenna geometry. Another resulting benefit of the rectangu-

lar sectioning is the increased symmetry that further reduces the computation time.

In large method of moment calculations it is important to consider the symmetries

and eliminate the unnecessary computations. In summary, compared to triangular
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and polygonal plate modeling, rectangular sectioning is more efficient for the LTSA

geometry.

3.4 Dielectric Modeling

The dielectric region of the LTSA of Figure 3.1 is a rectangular slab with a thickness

d. Therefore, any sectioning scheme would easily conform to its geometry. The most

common modeling technique for the slab geometry that has extensively been used in

the earlier work is cubical sections [26, 27, 28, 29]. For arbitrary dielectric shapes,
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tetrahedron modeling has been employed [43] . Since cubical sectioning has been

successfully used in the modeling of similar antenna structures, it has been employed

in this work (See Figure 3.6).

/ z i-th segment

Lz

Ly

Ty

Figure 3.6: Dielectric Segmentation

3.5 Dielectric Basis and Test Functions

In the dielectric region, pulse basis functions are employed which are suitable for

the segmentation of Figure 3.6. Therefore, the polarization current density in the

dielectric region is expanded as

c_ /_, 7i (3.3)

if (z,y, z) is in the i-th ceU, (Figure 3.6), and zero if outside.

In the analysis of microstrip antennas, the assumption of infinite dielectric is
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usually employed[44,45, 46]. Sincethe finite dimensions of the dielectric are ignored

in this assumption and since Sommerfeld-type integral evaluations are necessary for

the calculation of the matrix elements, this approach is unsuitable for the LTSA

analysis. In the analysis of scattering by homogeneous dielectrics, surface current

formulations have also been employed [47, 48], which is also applicable to the LTSA

problem. However, the case study for a sample LTSA has revealed that the surface

current formulation would lead to larger matrix sizes and more difficult numerical

integrations for the matrix dement computations compared to the volumetric pulse

expansion given in equation (3.3). The simplicity of volumetric pulse functions in

terms of integration complexity was also the reason why overlapping triangular or

sinusoidal basis functions were not preferred.

The expansion of the dielectric volume polarization current density by (3.3) satis-

fies the criteria that the divergence of the electric field intensity inside a homogeneous

dielectric region is zero [29]. However, it introduces surface polarization charges on

the faces of the volumetric pulses. The effect of these surface charges has been found

to be negligible for the LTSA modeling.

The same modeling scheme for the dielectric regions has been successfully applied

to dielectric scattering problems and wire antenna problems [28]. Recently, it has

also been applied to the analysis of microstrip antennas [29].

The test functions for the dielectric region are chosen as delta functions located
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at the center of each cell and directed in aft, a_ and aj directions. When employed

in (2.19), this test function choice results in the field equation (2.8), which is merely

a statement of the equality of the total fields at the center of each dielectric segment

and for each component of the electric field intensity in aft, a_ and aj directions.

The reason for the choice of this test function is basically its simplicity. Other test

functions would introduce additional complexity in addition to already numerically

difficult field calculation for three dimensional sources, especially in the source region

itself [49].

3.6 Source Modeling

Good source modeling in the LTSA analysis is very important because of the fact

that the source can contribute to the radiation pattern appreciably. The reason for

the source contribution is the openness of the feeding structures. The source region

of the LTSA may differ appreciably according to the mode in which the antenna is

being used or according to the feeding structure that is employed. Two of the most

commonly used source configurations are shown in Figure 3.7. When the antenna

is used in the receiving mode, power can be picked up easily by a detector diode

soldered across the apex of the antenna as shown in part a) of Figure 3.7

The second source configuration employs a microstripline-to-slotline transition

[50] as shown in part b) of Figure 3.7. In this figure, L/ is the input transition
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Figure 3.7: Possible Source Configurations of the LTSA a) Receiving mode with a

detector diode b) LTSA with a microstripline to slotline transition

length, zs0 is the distance of the microstripline to the antenna edge and Wq is the

width of the microstripline. In this configuration power is delivered to the slotline

with a microstripline which extends ,_,,,,/4 past the slotline edge, where 3_,,,, is the

microstrip wavelength. Slotline, on the other hand, is short-circuited _,1/4 away

from the microstripline edge, _,t being the slotline wavelength. This configuration

creates a resonant structure with a very good voltage standing wave ratio over narrow
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bandwidths [50]. The bandwidth can be increased by using matching circuitry on the

microstripline, while impedance matching the latter to the other parts of the circuit

at the same time.

Different source configurations of the LTSA must be modeled differently. For the

diode reception mode, the diode is modeled as a dipole with a delta gap generator

at its center [20]. When the dipole thickness is made equal to the thickness of the

detector diode, it has been shown earlier that this source modeling yields good results

[10].

For the input configuration of Figure 3.7, the microstrip radiation is initially

modeled by an infinitesimal current element at the center of the slotline and the

other parts of the antenna are approximated by rectangular sectioning, including the

short circuit for the slot line. This has been accomplished by introdudng another

current at the exact short circuit location. The length of the short circuit current

is made greater than the slot line width so as to make the current flow between

the lower and upper parts of the antenna. It is found that the current element

modeling for the microstripline gives very satisfactory results for the co-polar radiation

characteristics of the antenna. However, it cannot predict the correct level of cross

polarized radiation in the boresight direction. Therefore, a third source model is

developed which accounts for the microstripline rigorously, by defining currents on

the microstfip as well. The feed point of the microstrip is approximated by a current

element in F direction, which avoids the difllcuity of introducing the connection mode
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currentsbetweenthe microstripline and the antennaplates. This third model is found

satisfactory for determining the radiation characteristics of the antenna, as will be

seen in Chapter 4.

3.7 Evaluation of the Matrix Equation

The choices of the conductor and dielectric basis and test functions of sections 3.3 and

3.5 determine how the matrix elements will be computed. Assuming N unknowns

for the conducting parts and S segments for the dielectric region, there will be 3S

unknowns in the dielectric. Therefore, 3S = M of (2.19). If we consider Z as,

Ajv×Jv BNxM

CMxJV DMxM

Z (3.4)

A and B submatrices will have elements which are calculated by reaction integrals.

For currents J_ and Jj the reaction integral is given by

Z_j = fsj E_ " Jj dS

= fs Ei" J_ d5
i

(3.5)

where E i and EJ are the fields radiated by Ji and Jj, respectively, and Si and Sj

are the regions where Ji and J_ are nonzero. Submatrix A consists of the conductor-

conductor interactions. Its dements are calculated by the reaction integrals between

the conductor currents only. The calculation of these elements is explained in Section
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3.3 sinceit is related to the geometry approximation directly. Theseelementsare

calculatedby using the expressions reported in [42].

Since delta functions are chosen as the testing functions in the dielectric region,

C and D submatrices are comprised of the fields radiated by the conductor currents

and the dielectric polarization currents respectively at the center of each segment.

Evaluation of the C submatrix elements is carried out using field equations for piece-

wise sinusoidal line sources [14]. The field of any conductor current can be found by

adding the fields of the corresponding monopoles that makes up the whole current.

Referring to Figure 3.1, conductor currents can be in z or z directions only. For a

current in z direction, the components of the e]ectrlc field intensity, ZcD,, where s

stands for z, y or z component, can be found as

_ --_, (kom - z)CkoL + _) ezpC-j_) (3.6)
Zcv. = E C, _=I ]_,:i ko., [(koD - _)' + (koH)_]

,_-i [(kom- + (koH)']
(3.7)

fo , (3.8)
i=1 m=l Pt_n

where D, H and L are the distances between the center point of the monopole i and

the center of the dielectric cell, in z, y and z directions, respectively, as shown in

Figure 3.8. The various other parameters are
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The fields of the x-directed currents can be found using equations (3.6-3.8) with

a coordinate rotation.

Returning to the submatrix B, and considering that its elements are the reaction

integrals between the conductor currents and the dielectric currents, the following

approach is applied in their calculation. The dielectric cell is divided into smaller

cubical sections and the fields of the conductor current is calculated at the center of
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each small section. Multiplication of these fields with the volume of the subdivision

and summation over the cell gives a good approximation to the elements of the B

submatrix. Therefore, if the dielectric cell has dimensions Lffi, L u and Lz and if it

is divided into nffi, rtu and n, segments in z, y and z directions, respectively, the

reaction, ZDC, of a z directed conductor current on a dielectric current becomes

_'° "" " Z j LffiL_L, (3.9)

i----1 ./----1 h=-I _rt_lrLitTtz

where Zcv.,i_ is the field of the conductor current at the center of the subdivision

ijk, and 8 represents z, y or z directed dielectric current. The interactions between

the z-directed conductor and dielectric currents can be found by using (3.9) with a

coordinate rotation for the conductor current. This approximation to the dielectric-

conductor interaction submatrix B is justified because of the fact that MoM usually

yields diagonally dominant impedance matrices. Since the elements of B are off-

diagonal, the results will not be as sensitive to errors in the calculation of these

elements compared to the ones in diagonal elements of A and B.

The elements of the submatrix D are directly calculated using equations (2.9-

2.11). When calculating the field of a cell current in itself, the singularity in the

expression is extracted as suggested in [49]. For the off-diagonal elements of D, the

same type of approximation as (3.9) is made to reduce the computation time.

The voltage vector calculation also follows the same approach. The first N el-

ements are the reactions of the source and the conductor expansion currents, the
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remaining M = 3S are the fields radiated by the assumed source distribution at the

center of the dielectric segments.

All of the numerical integrations for the evaluation of the matrix elements are

carried out using Gauss-Chebychev quadratures which are suitable for oscillatory

kernels.

3.8 Solution of the Matrix Equation

The matrix equation,

ZI = V (3.10)

is solved by using the Conjugate Gradient (CG) method [51, 52, 53]. CG method is

an iterative conjugate direction method. In Conjugate Direction method the error

functional is minimized successively in the directions of a set of Z-orthogonal vectors.

A set of vectors P,_, n = 1, 2,..., (N + M) is said to be Z-orthogonal (or Z-conjugate

if they satisfy

<ZP,,P_>=0 fori_j (3.11)

where * denotes the conjugate.

In conjugate direction methods, at each iteration, In -t- anP,_ is minimized where

P,, lles on the (N + M - 1) dimensional hyperplane

< P*, ZI- V >= 0 (3.12)
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whosenormal is ZP. The conjugate direction methods differ in the way P,, are

obtained. When the vectors P, are obtained by Z-orthogonallzation of the residual

vectors, R_, which will be defined subsequently, a CG method results.

The CG method is applicable to Hermitian matrices (operators). In the dielectric

supported LTSA case the matrix Z is not symmetric and hence, CG method cannot

be applied to (3.10) directly [51]. In order to satisfy the symmetry and the positive

definite requirements for Z, both sides of (3.10) can be multiplied by Z T, where T de-

notes transpose conjugate. The CG algorithm can then be applied to the transformed

equation without actually forming the product zTz [54].

For an initial guess Io, the CO method starts by evaluating,

1% = V-ZIo

Po = zT1% (3.13)

and then develops each successive approximation by,

In-k1 = In "IL a,_P,_ (3.14)

where

]]ZTa.nll2
[[Zp.ilz. (3.15)

The residual vectors are generated as

R.÷z = 1t. - a.ZP,,. (3.16)
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The direction vectors at eachiteration areobtained as

Pn+1= zTI_+I + _,_P_ (3.17)

where

I[zTP_+II[2 (3.18)

This algorithm minimizes the norm of the residual, II1 11,at each iteration. The

iterations are terminated when the error norm, IIR_[[ is less than some ratio of the

initial error norm, [[Rol[. The initial guess in this work is taken as zero vector in all

computed results. Therefore, IIRol] = V. When IIR_I[ __ 10-_[11%li, the iterations

are terminated. Different tolerance values (10 -s, 10 -6) have also been employed to

check the sensitivity of the results around the solution with the same input data.

The solutions obtained with smaller tolerances are nearly identical in terms of the

radiation pattern and current distribution, and hence, 10 -4 is used in further results.

CG method has many nice features that make it useful in the solution of large

linear systems of equations such as the one obtained in the LTSA analysis. Some of

these which might explain the preference of CG iteration over the direct methods can

be outlined as [54, 55]:

• The method is highly insensitive to the initial guess Io. As mentioned earlier,

Io = 0 is chosen in all of the computations involved in this work, with no

difficulty in obtaining the solution.

40



• The number of iterations required for CG method is equal to the number of

distinct eigenvalues of the matrix Z [54]. This property makes CG method

espedally useful for large MoM applications, since in most of the cases, the

eigenvalues of Z are closely spaced. Actually, it is this property that favors

CG method over direct methods since CG method lowers its computational

cost with closely spaced eigenvalues. In order for CG method to be less costly

compared to Ganssian Elimination, the number of iterations should be less

than (N+M)/3, where (N+M) is the size of the matrix Z. Most of the results

in this work are obtained with number of iterations less than this number.

• The convergence of CG method is 1/K quadratic [54], assuming that the so-

lution is reached in K iterations. The reason for this rate definition of Sarkar

[54] is that the algorithm requires K steps to achieve the effect of one step of

a method with a true quadratic convergence rate.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results of the analysis of LTSA's in air or with a dielectric support

will be given. Verification of the computed results and comparison to experimental

measurements are given section 4.2. A parametric study of air LTSA's is explained

in Section 4.3. Finally, the computed results for dielectric LTSA's are presented in

Section 4.4, where the effect of the dielectric thickness and permittivity are investi-

gated.

The radiation patterns of the antenna in the E-Plane, H-Plane and the D-Plane

are used throughout this chapter. With the coordinate system of Figure 3.1 for the

antenna configuration, E-Plane of the antenna coincides with the z - z Plane, whereas

H-Plane is the z-y plane, as shown in Figure 4.1 and Figure 4.2, respectively. The D-

Plane is a diagonal plane located at 45 degrees to the E and H-Planes. The radiated

patterns are measured and computed for co-polar and cross-polar components. The

co-polar component of the field of the antenna is the 0 component for both principal
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Figure 4.1: E-Plane of the LTSA
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Figure 4.2: H-Plane of the LTSA
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planes (E and H). Therefore, E and H plane data axe measured by considering

Figure 4.1 and Figure 4.2, and measuring the field component in the direction shown

by the direction of E in the mentioned figures. In the E-Plane, _b = 0 degrees

and 0 is varying, whereas in the H-Plane, 0 = 90 degrees and _b is varying. These

can be better understood by considering Figure 4.3 which shows the LTSA and the

standard gain antenna positioning. In Figure 4.3 it is assumed that the test antenna

(LTSA) is used in receive mode and the polaxization of the transmit antenna is as

shown, however, everything remains for the transmit mode operation of the LTSA.

Considering Figure 4.3, co-polar measurements can be listed as:

• E-Plane: /3, = 90 degrees,/3t = 90 degrees.

• H-Plane: /3, = 0 degrees, fit = 0 degrees.

• D-Plane: _, = 45 degrees, _t = 45 degrees.

For cross-polax measurements, changing the polarization of the transmit antenna

will be sufficient, which means changing/3_. This measurement strategy for the cross-

polarized fields conforms to the third definition of Ludwig [56]. Therefore, cross-polar

measurements can be done with the following set-up.

• E-Plane: /3, = 90 degrees,/3t = 0 degrees.

• H-Plane: /3, = 0 degrees,/3_ = 90 degrees.
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• D-Plane: _ - 45 degrees, _ : -45 degrees.

4.2 Verification of Computed Results

Numerics] results obtained using the code are tested and verified both computa-

tions]]y and experimentally. First, the unequs]-size rectangular sectioning scheme

of section 3.2 is tested. In order to do this, the analysis is extended to handle all

four edges of the skew-plate antenna of Figure 1.2. The results of this analysis is

compared to those obtained from another code which uses skew segments, and hence

models the skew-plate antenna exactly in the geometrical sense. In many cases that

are computed, very good agreement is observed between the results. Figures 4.4

and 4.5 show the comparison for the E-Plane and H-Plane co-polar radiation pat-

terns, respectively, for a skew-plate antenna with L = ),0, H = 0.5)_0, a = 5deg

and W! = 0.004_o. In the skew segmentation model, 7 segments across the length

and 4 segments across the height are used. In the rectangular model, the number of

divisions are 8 for the length and 5 for the height. As can be seen from Figures 4.4

and 4.5, the two computations agree very well, the largest difference between the two

being about 1 dB. Considering that all four sides are approximated with unequal-size

rectangular modeling and the fact that there is only one edge in the actual LTSA

geometry, which is approximated in this manner, it is concluded that the accuracy

would be even better in that case.
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Figure 4.4: Comparison of E-Plane radiation patterns for skew-plate mad unequal-size

rectangular modeling (L = 1.0)to, H = 0.5_o, Wt = 0.004_o, a = 5 degrees).
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Figure 4.5: Comparison of H-Plane radiation patterns for skew-plate and unequal-size
rectangular modeling (L = 1.0,_o, H = 0.5,_o, W! = 0.004_o, a = 5 degrees).
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The convergenceof the unequal sizerectangular sectioning model is usually ob-

tained using 6 to 7 segments per wavelength across the length and 4 to 5 segments per

wavelength across the height of the LTSA. The number of segments required across

the length is larger because the unequal-size rectangular sectioning is more sensitive

to segmentation across the length. Figures 4.6 and 4.7 show the radiation pattern

comparison for two different segmentations in the E and H planes, respectively, of

a skew-plate antenna with parameters L = 5.2_o, H -- 0.9)_o, W! = 0.06)_o and

a = 7 deg. The data represented by solid lines in these figures are obtained by

I
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w i ! I I

-50 ' ' ' ' '
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Figure 4.6: E-Plane radiation pattern for a skew-plate antenna with two different

segmentation (L = 5.2)_o, H = 0.9)Lo, W! = 0.06_o, a = 7 degrees).

using 30 segments across the length and 6 segments across the height, whereas the

dotted lines are obtained using 35 and 7 segments across the length and the height,
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Figure 4.7: H-Plane radiation pattern for a skew-plate antenna with two different
segmentation (L = 5.2_0, H = 0.9)_0, W! = 0.06,_0, a = 7 degrees).

respectively. As can be seen from the figures, the analysis results are very close to

each other until 150 degrees. The effect of the difference in segmentation is observed

only after 150 degrees, displaying the good convergence behavior of the algorithm.

The parameters of this antenna are chosen the same as that analyzed in [10, 5]. The

results of Figures 4.6 and 4.7 agree very well with those reported in [10].

The ultimate test on any electromagnetic modeling code is done by calculating the

near fields at the conducting boundary and in the dielectric region and checking the

calculations for the satisfaction of the boundary conditions [17]. The cost of this test

is the same as the solution of the MoM matrix equation and hence is not practical

for large problem sizes. However, an easier approach to test the near-field behavior

of a code is to calculate the current distribution on/in the structure and check it for
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abnormalities in the amplitude and phase. This approach is used in this work to test

the near-field performance of the code. Figures 4.8 to 4.11 show the magnitude and

phase plots of the current on a LTSA with L = 5.2_o, H = 1.5_o, W! = 0.06_0 and

a = 7 deg.

0 i i

0 1.3 2.6 3.9 5.2

Distance to edge (wavelengths)

Figure 4.8: Magnitude of antenna current along z = 0.75)_o. w : J,,. _ _ :J..

Figures 4.8 and 4.9 show the magnitude and phase variation of the z and z com-

ponents of the antenna current along a horizontal (z) cut at 0.75_o away from the

lower antenna edge. Figures 4.10 and 4.11 gives the same components for horizontal

(z) cut at 2.53_o away from the antenna edge. The traveling wave nature of the z

component of the current is evident in Figures 4.8 and 4.9, and both the amplitude

and the phase are free of abnormal behavior. The current displays a standing wave
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Figure 4.11: Phase of antenna current along z = 2.53_o. -- : J_, - - - : J_.

nature in z direction, as shown in Figures 4.10 and 4.11. This should be expected

because the antenna height is small (1.5._o) and the current bounces back and forth

between the two edges of the antenna.

Computed results are also verified by experimentation. For this purpose, two

antennas are built and measurements are taken in E, fir and D planes. The first an-

tenna is intended to check the air LTSA results and was built using 5-rail brass sheet

and supported using styrofoam which has a permittivity (1.05), very close to that of

free-space. Microstripline to slotline transition is used in the feeding section of the

antenna which extends 0.5)t0, where )to is the wavelength at the operating frequency

of 9 GHz. The feeding part of the antenna is designed using 31-rail, e_ = 2.3;$, Duroid

substrate. The substrate is terminated abruptly at the apex of the antenna, where
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the taper starts. The guidelines given in [50] are used to design the microstripllne to

slotline transition which resulted in slotline impedance of 138.2_ and microstripllne

impedance of 120n. This slotline impedance is achieved with W! = 0.659 mm

(0.01977)`0 at 9 GHz). The wavelength in the slotline is 2.88 cm (0.864)`o), whereas the

microstripline wavelength is 2.4793 cm (0.?43?9)`0). The width of the microstripllne

for 120f_ characteristic impedance is found as 0.4171 mm (0.01251)`0). In order to

match the microstripline to the 50f_ output impedance of the test equipment, a quar-

ter wave impedance transformer is designed at the center frequency of 9 GHz. The

final design is shown in Figure 4.12, where H = 1.5)`o, L_ = 0.5)`0, zs0 - 0.216)`o,

c = 0.01251)`0, d = 0.03392)`0, e = 0.06?9),0, f = 0.63221)`0, and g = 0.45)`0.

I
, = xsO = u
! !

!

' "_ Xs114 _, I- , Xms/4 I

,, ,- -- . wf

!
I --==I_ C 'ql'*-- I
I I

I I

I !

HI d--- i

1==' 1

° i, -
J-" ....... _I

Figure 4.12: Feed design of the test antenna
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The comparison between computation and measurement for co-polar E and H

plane radiation patterns is given in Figure 4.13. Figure 4.14 shows the comparison

for the co-polar and cross-polar radiation patterns in D plane. In the computation

the dielectric support at the feeding part of the antenna is modeled rigorously. The

microstripline feed is modeled using only 120f/characteristic impedance line extend-

ing to the edge of the antenna. In the numerical model 48 segments across the length

and 6 segments across the height of the conductor are used. The microstripline is

modeled by 17 segments, resulting in 1059 conductor unknowns. The dielectric seg-

ments across length, width, and height are 4, 34 and 1, respectively, which give 408

dielectric current unknowns. The solution time for this case was 2062 CPU seconds

on CRAY Y-MP.
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Figure 4.13: Measured and computed co-polar radiation patterns for LTSA in air

(L = 5.5A0, Li = 0.5A0, H = 1.SA0, I4/'/= 0.02A0, _' = 7 degrees).
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Figure 4.14: Measured and computed co-polar and cross polar D-Plane radiation
pattern for LTSA in air (L = 5.5_0, Li = 0.5_o, H = 1.5A0, W 1 = 0.02Ao, a = 7

degrees).

As can be seen from Figures 4.13 and 4.14, quite good agreement is obtained

between the computed results and measured data. The computed pattern predicts the

main beam and the first side lobe level correctly. The pattern shapes also agree well.

Slight discrepancies between the two is thought to be resulting from the alignment

errors during the manufacturing of the test antenna and from the effect of the adhesive

used to attach the antenna to the styrofoam. The difference between the cross-polar

measured and calculated data below -90 degrees results from the use of an absorber

piece over the source region during the measurements. However, the maximum cross

polarization level and the cross polarized pattern is predicted correctly by the code

until this angle. The effect of the absorber is negligible for the co-polar measurements,
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which leadsto the good agreementfor this part of the comparison.

The secondtest antennais built using a 31-roll thick, e_ = 2.33 Duroid substrate,

and is used to evaluate the dielectric LTSA calculations. This antenna has the same

feed design values as the air LTSA test antenna. Figures 4.15 and 4.16 show the

comparison for the E and H plane co-polar radiation patterns and co-polar and

cross-polar radiation patterns for the D plane, respectively. The computed patterns

for this case is obtained using 36 segments in length and 6 segments in height for the

conductor parts, 17 segments for the microstripline, 40 segments in length, 1 segment

in height and 24 segments in width for the dielectric region. The total number of

unknowns is 3541 of which 661 is the conductor unknowns. The solution time for this

case was 2766 CPU seconds on CRAY Y-MP.

A very good agreement is observed between the computed and measured data for

this case. The code predicts the shape and the amplitudes of the radiation patterns

accurately for this antenna as well. Actually, the agreement is better for this antenna

since the dielectric support of the antenna extends through the whole length of the

antenna. In the air case test antenna, the dielectric support is terminated in the feed

section and hence the diffraction from the dielectric edge can be appreciable and is

not handhd by the code due to choice of the basis functions in the dielectric. Also,

the slight discrepancies after 150 degrees in dielectric LTSA comparisons is again

attributed to the use of an absorber block in the measurements over the input section

of the antenna which is not modeled by the code.
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Figure 4.15: Measured and computed co-polar E and H-Plane radiation patterns for
a dielectric LTSA (e,. = 2.33, d = 0.02362Ao, L = 5.5Ao, Li = 0.5Ao, H = 1.5Ao,

Wt = 0.02Ao, a = 7 degrees).

U_

i ! I I

CROSS-POLAR

-10

-20

-30

-40

-50

-60 ....
-180,150.120-90-60-30 0

w ! i !

CO-POLAR

! | |

30 60 90 120 150 180

Measured
Computed

I I I I

ANGLE OFF BORESIGHT (DEGREES)

Figure 4.16: Measured and computed co-polar mad cross-polar D-Plane radiation
patterns for a dielectric LTSA (e, = 2.33, d = 0.02362Ao, L = 5.5Ao, Li = 0.5Ao,

H = 1.5Ao, IV/= 0.02Ao, a = 7 degrees).
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The comparisons with available data in the literature and with experimental data

that is presented in this section leads to the conclusion that the theoretical model and

the code can predict the radiation characteristics of air or dielectric linearly tapered

slot antennas with reasonable accuracy.

4.3 Computed Results for Air Tapered Slot Antennas

In this section, computed results for air LTSA's will be presented. In [4], Janaswamy

has observed that as the antenna height is decreased for fixed length and taper an-

gle, better radiation patterns are achievable. In order to address this question, a

parametric study of air LTSA's is planned and carried out. Since the behavior of

the dielectric LTSA is quite similar to the air LTSA, conclusions drawn for the air

LTSA can also be applied to the dielectric LTSA. In the parametric study, the apex

width, Wj, of the LTSA is chosen as 2 mm (0.06)` at 9 GHz) and the antennas are

assumed to be in the receiving mode with a diode soldered at the apex. The diode

is modeled by a strip dipole of width 0.02)` and length 0.2)`. Three levels for each of

the parameters L, H and c_ are chosen. The levels for a are 5 deg, 7 deg and 9 deg.

H assumes the values of )`, 1.5)` and 2)`, whereas L varies as )`, 3), and 5)`. The

analysis is valid for any frequency provided that all dimensions are the same used in

the analysis in terms of the wavelength. These three levels for a, H and L resulted

in 27 numerical experiments. Co-polar radiation patterns in E, H and D planes and
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cross-polarradiation patterns in D plane are computed for all experiments. Table 4.1

shows the experiments and the corresponding calculated figures of merit. The figures

of merit used in Table 4.1 are:

1. EBW: 3-dB beamwidth in the co-polar E-Plane radiation pattern,

2. ESL: First sidelobe level in the E-Plane radiation pattern,

3. HBW: 3-dB beamwidth in the co-polar H-Plane radiation pattern,

4. HSL: First sidelobe level in the H-Plane radiation pattern,

5. DBW: 3-dB beamwidth in the co-polar D-Plane radiation pattern,

6. DSL: First sidelobe level in the D-Plane radiation pattern,

7. DXL: Peak cross-polarization level in the D-Plane radiation pattern.

Since the antenna and the receiving strip dipole are symmetric about the plane

z = 0, the cross polarization is theoretically zero (-oodB), in the E and H planes of

the antenna. This fact is also verified in the calculations. Considering Table 4.1, the

following observations are made:

• As H decreases for a fixed L and a, EBW first decreases and then starts to in-

crease again. ESL also behaves in the same manner. However, HBW increases

steadily whereas HSL decreases. The D-Plane radiation pattern follows the

same trend as the E-Plane with first decreasing then increasing DBW and
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Exp. No

1 5 2

2 5 2 34.84 -14.02 41.0 -6.06 40.44 -6.72 -2.28

- 3 5 2 5 38.72 -15.08 42.0 -6.49 42.58 -5.84 -1.37

-- 4 5 1.5 9 18.6-14.05 48.4-10.07 24.86 -9.76 -6.54

5 5 1.5 7 20.0-14.97 48.36-10.35 26.28-8.66-5.57

6 5 1.5 5 20.84-12.20 48.52-10.65 27.2-7.60-4.95

7 5 1.0 9 32.9-11.52 65.0-20.38 36.24-6.01 -4.18

8 5 1.0 7 34.5-15.62 61.84-19.64 36.36 -5.29-3.91

9 5 1.0 5 40.9-13.05 64.64-20.07 38.96-4.86 -3.28

* 10 3 2 9 43.2-12.50 52.2 -5.63 52.1-7.52-2.38

* 11 3 :_ 7 44.0 -11.4 53.12 -5'62 52.40-6.82-2.00

* 12 3 2 5 45.0 -9.26 54.2 -5.45 52.62-6.51-1.86

13 3 1.5 9 26.0 -4.31 59.24 _' -6.64.i 35.74-5.93-2.97

14 3 1.5 7 26.5 -4.10 53.96 -7.19 34.1 -6.26-3.38

15 3 1.5 5 25.12 -3.79 54.0 -7.21] 33.0-5.77-3.04
16 3 1.0 9 38.2-12.31 71.22-17.47 44.2-5.88-4.72

17 3 1.0 7 41.6-10.02 72.2-18.42 46'11 -4.75-4.17

18 3 1.0 5 45.3 -7.7 73.4-17.31 48.0-3.93-3.73

** 19 1 2.0 9 101.4 -2.87 87.2 -6.48 72.0-3.94 0

** 20 1 2.0 7 100.6 -2.48 86.0 -5.79 71.4-3.67 0

** 21 1 2.0 5 1001b -2.08 84.6 -5.05 71.0-3.38 0

** 22 1 1.5 9 95.6 -2.45 98.5 -3.78 94.0-3.21 0

** 23 1 1.5 7 95.0 -1.99 92.4 -3.20 93.0-2.92 0

** 24 1 1.5 5 94.0 -1.54 87.0 -2.56 91.6-2.63 0

** 25 1 1.0 9 81.5 -2.49 80.4 -3.66 96.2-5.13 0

** 26 1 1.0 7 81.0 -2.03 79.5 -3.25 95.6-4.76 0

** 27 1 i.0 5 80.4 -1.55 78.8 -2.78 93.8-4.37 0

Table 4.1: Results for the sir LTSA study

9 32.0 -11.41 41.2 -5.81 38.7 -7.66 -2.98

DSL. The peak cross polarization level in the D-Plane behaves differently for

antennas of different length. For L = 5_, DXL first decreases then starts to

increase, however, for L _< 3_ it steadily decreases as H decreases. Figures 4.17

and 4.18 display these behaviors. The experiment numbers of Table 4.1 are
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Figure 4.17: Vaxiation of E and H-Plane patterns of LTSA's with H.

used to identify the data in these figures.
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Figure 4.18: Variation of D-Plane pattern of LTSA's with H.
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• As a decreases, EBW increases. ESL decreases slightly for L = 5_. For

shorter emtennas, EBW remains nearly the same, however ESL increases. The

H-Plane of the antenna is not as sensitive to variation in a, the main beam

and sidelobe levels and the shape remain nearly the same, while lobe locations

change slightly. Only for H = ,_ and L = 5)_, a slight decrease of HBW is

observed with decreasing a. DBW, DSL and DXL increase with decreasing a,

the largest deviation in DXL being for large L. These variations are shown in

Figures 4.19 and 4.20.
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Figure 4.19: Variation of E and H-Plane patterns of LTSA's with a.

• As L increases, the antenna behaves as expected. All of the 3 dB beamwidths

decrease, with decreasing sidelobe levels and peak cross polarization level in D-
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Figure 4.20: Variation of D-Plane pattern of LTSA's with a.

Plane. However, an interesting behavior is observed for short antennas when

the totai height of the antenna is laxger than the length. In these cases, the

maximum in the E-Plane radiation pattern is not obtained in the boresight

direction. These cases are marked with * in Table 4.1. For short antennas,

the current does not have the traveling wave nature in x-direction any more.

When individual segment currents in x and z directions are considered for the

LTSA geometry, a similarity to the skewed linear antenna can be a possible

explanation for this behavior. Depending on the included angle, the skewed line

antenna can create a radiation pattern which has a maximum at a direction

other than boresight. When the length of the antenna is further reduced,

maxima of the computed patterns axe obtained in the D Plane and in the
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crosspolarized direction (cases 19 to 27). This observation is again attributed

to the fact that the radiation due to z directed currents are more important

than x directed currents. These cases are marked with ** in Table 4.1. The

behavior of the antenna as a function of L is demonstrated in Figures 4.21 and

4.22.
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Figure 4.21: Variation of E and H-Plane patterns of LTSA's with L.

In general, it is observed that the peak cross polarization level of the antenna is

quite high for the cases considered. However, it is interesting to note that a better

radiation pattern can be obtained by decreasing the antenna height for a fixed L and

a. Another interesting observation is that somewhat better antenna characteristics

can still be obtained for short antennas (L = ,_, for example) by keeping the antenna
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Figure 4.22: Variation of D-Plane pattern of LTSA's with L.

height small as well. This way, although the sidelobe levels and the cross polarization

level are not as small as one can obtain from a longer antenna, the maximum is

still attained in the boresight direction in the E-Plane. For array applications, this

might be a useful design criterion since the sidelobe and cross polarization levels and

beamwidth heavily depend on the array factor of the structure as well.

4.4 Computed Results for Dielectric Tapered Slot Anten-

nas

In this section, sample results for dielectric LTSA's will be given. In order to in-

vestigate the effect of the dielectric permittivity, the same antenna geometry with a
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receiving diode is computed with three different permittivities of the dielectric sup-

port. The results with the antenna parameters are given in Figures 4.23 and 4.24.

It is seen that, as the permittivity increases the E and H-Plane pattern sidelobe
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Figure 4.23: Variation of the E-Plane pattern for LTSA's with e.,.. A: e,. = 2.33,
B: e, 4.0, C: e, = 5.0 (L = 2.0,_o, H = 0.4)_o, W l = 0.01,_o, d = 0.03)_o, a = 5

degrees).

levels increase. The 3 dB beamwidth in the E-Plane remains essentially the same

for this particular antenna geometry, whereas the H-Plane pattern beamwidth de-

creases. This should be expected since a higher percentage of the radiated power is

trapped in the dielectric region of the antenna as the permittivity increases. Also,

with increasing permittivity, the H-Plane pattern becomes more asymmetrical.

The analysis of the antenna of Figure 4.23 with e, = 2.33 with changing dielectric

thickness is shown in Figures 4.25 and 4.26. The same kind of behavior is observed
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Figure 4.24: Variation of the H-Plane pattern for LTSA's with e,. A:e, = 2.33,
B:e, = 4.0, C:e, -- 5.0 (L -- 2.OXo, H -- 0.4,_o, IV/ = 0.01,_o, d -- 0.03Xo, a -- 5

degrees).
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Figure 4.25: Variation of the E-Plane pattern for LTSA's with dielectric thickness,
d. A: d = 0.02_o, B: d = 0.06,_o, C: d = 0.1_0 (e, = 2.33, L = 2.0Xo, H = 0.4_o,

IV� = 0.01)_o, a = 5 degrees).
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Figure 4.26: Variation of the H-Plane pattern for LTSA's with dielectric thickness,
d. A: d = 0.02Xo, B: d = 0.06X0, C: d = 0.1Xo (_ = 2.33, L = 2.0Xo, H = 0.4),0,

Wj = 0.01),o, cz : 5 degrees).

with increasing dielectric thickness as with the increasing permittivity. However, in

this case the variation in the side]obe levels is not so large, a fact resulting from the

small value of e_. To demonstrate this effect, a high permittivity antenna (e,. = 9.8)

with changing dielectric thickness is analyzed and the results are shown in Figures 4.27

and 4.28. In this case, the effects are much more pronounced than the low permittivity

case of Figures 4.25 and 4.26. These observations follow those reported in [4].
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Figure 4.27: Variation of the E-Plane pattern for LTSA's with dielectric thickness,
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CHAPTER 5

COMPUTER CODE AND PERFORMANCE

5.1 Code

The block diagram of the code is shown in Figure 5.1. In the main program, strut,

the geometry of the antenna is entered and the type of feeding is chosen. Subrou-

tine mom calls the impedance matrix filling subroutines filee, filcd, fildc and fildd.

These calculate the conductor-conductor, conductor-dielectric, dielectric-conductor

and dielectric-dielectric interactions respectively, filvlt calculates the right hand side

vector of the MoM matrix equation (2.22). The matrix equation is solved by the

cgrad routine which utilizes the conjugate gradient method of Chapter 3. Organiza-

tion of the input and output flies of the code and the listings of the routines can be

found in the appendix (under separate cover).

5.2 CPU Time and Memory Requirements

Since large matrices result in the analysis, the performance of the code is optimized by

both approximations in the calculations and by vectorization. The final version of the
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STRUC

.Enter geometry

.Divide into

sections

.Store width,

height, number
of sections

FILCC,
FILDD,
FILCD,
FILDC

.Calculate
conductor-

conductor,

cond.-dielect.,

dieL-dieL,
diel.- cond.

interactions

.Other routines

are called

FILVLT

.Calculate

right-hand
side vector,

(voltage

vector)

CGRAD

.Solve matrix eqn. by

Conjugate Gradient
Iteration

Figure 5.1: Block Diagram of the Code

code is adapted to and run on CRAY Y-MP of the North Carolina Supercomputing

Center. The cost analysis of the code is carried out in order to estimate the necessary

run times. For N conductor current unknowns and M dielectric polarization current
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density unknowns, the matrix filling cost (FC) is given by

FC = O(N)n + O(NM)n + O(NM)nm + O(M)a Flops (5.1)

where n is the number of integration points, m is the number of subdivisions used

in the computation of the dielectric-conductor interaction submatrix and s is the

number of divisions used in the dielectric to didectric interaction approximations. It

is seen from (5.1) that FC is linearly proportional to (N + M), the total number of

unknowns.

The solution cost (SC) is given a

SC < (N + M) a Flops. (5.2)
3

As mentioned earlier in Section 3.8, (N + M)a/3 is the upper limit of SC. For most

of the cases analyzed using the code, SC was much smaller than this limit because

of the dominant diagonal of the resulting MoM matrix.

The performance of the code is monitored and enhanced throughout the work.

Figure 5.2 shows the matrix fill time and the solution time of the code on Vector

AUiant FX-40. The filling time increases linearly as predicted by (5.1), whereas

the solution time increases faster, dominating the CPU time usage after about 400

unknowns. Figure 5.3 shows the comparison for the same cases analyzed using Alliant

FX-40 and CltAY Y-MP. The big difference in the total run times in this figure

results from the vectorization of the code and the high speed of the CRAY Y-MP
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Figure 5.2: Matrix fill-time and solve time on Alliant FX-40 for air LTSA's

supercomputer. Another influencing factor is that the CRAY Y-MP is an actual

memory machine, so that no time is lost for array reading and writing to and from

the disk. Figure 5.4 shows the total run time as a function of number of unknowns for

the dielectric LTSA's. All of these cases were calculated on the CRAY Y-MP because

of the large CPU time that would be required otherwise. Here, it is worthwhile to

note that the vectorization of the solution part of the code resulted in nearly linear

behavior of the computation time instead of a higher power close to 3.

The limiting value of the number of unknowns in the method is set to be about

N + M = 5000, where in a typical analysis N = 1000, and M = 4000. The run time

memory requirement for this limit is approximately 26 MWords. All cases analyzed

using the code resulted in less number of unknowns than 5000, and hence less mere-
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ory requirement. The largest case that is analyzed using the code is the experimental

dielectric LTSA of Chapter 4, which resulted in about 4000 unknowns. For higher

permittivity dielectrics than that was used in the experiment, (_, : 2.33), one would

need more subdivisions in the dielectric. This, in turn, would reduce the solvable

antenna dimensions. Therefore, as the permittivity increases, smaller antennas can

be analyzed accurately with the code. Also, increasing the dielectric thickness would

have the same effect since more segments than one would be needed across the thick-

ness (1/direction) of the dielectric. However, these statements are valid for current

computational abilities and with the future developments in computer technology the

solution of bigger problems with similar methods will be possible and less costly.
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CHAPTER6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK

In this work, a Method of Moments model for the analysis of the Linearly Tapered

Slot Antenna is developed. The conducting parts of the antenna, including the feed

section, are approximated closely for the first time. The finite dielectric region is

modeled rigorously by including the equivalent volume polarization current density

as an unknown in the formulation. The use of Schelkunoff's equivalence principle for

the conducting region, together with the total field equality principle in the dielectric

region, renders the problem into one which can be solved in free-space. As a result of

this, the use of the particular Green's function and the associated approximations are

avoided. The expansion functions are piecewise sinusoidal functions and unit pulses

for conductor and dielectric regions respectively. Conductor basis functions are also

used in the testing of the IE leading to a Galerkin type formulation for the conductor

parts of the antenna. In the dielectric region, point matching is chosen to simplify

the analysis.

The model is incorporated into a MoM code which can analyze LTSA's in air or
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on a dielectric substrate, with a detector diode at the apex, or with a microstripline-

to-slotline transition in the feed section. The code results are compared favorably

to measurements and to available data in the ]iterature. In order to check the ap-

proximation of the antenna taper by unequal size rectangular sectioning, the model is

extended to analyze the skew-plate antenna and the results are favorably compared

to a skew-segmentation model developed in this work. The variation of the radiation

pattern with changing antenna parameters is investigated for the air TSA and the

results are tabulated. It is observed that, narrower E-Plane beamwidths can be ob-

tained as the antenna height, H, is reduced. Another important observation is that

somewhat better antenna characteristics can be obtained for short antennas (small

L), by reducing the antenna height (H) as we]].

Since the matrix filling part of the MoM analysis is a major computational task,

the computation time is reduced through the use of symmetry and the derivation

of new simpler formulas for the mutual impedances of the perpendicular and par-

a]]el cop]anar sinusoidal surface monopo]es. Furthermore, the speed of the code is

enhanced with vectorization of the matrix solution part of the algorithm, which em-

ploys a conjugate gradient iteration.

The model predicts the radiation characteristics of the LTSA with good accuracy.

The unequal size rectangular sectioning scheme is a snitab]e approach converging

to correct results by using approximately six segments per wavelength across the

length and four to five segments per wavelength across the height of the antenna.
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The computation times are realizable even for the largest antenna analyzed. The

largest CPU time that is consumed by the code was about 2400 CPU seconds for

20A02 air antenna, whereas the largest dielectric supported antenna (15A_) analysis

consumed 3700 CPU seconds on CRAY ¥-MP. Solvable problem size reduces with

increasing dielectric permlttivity, since more segments are required in the dielectric

region because of the reduced slotilne wavelength.

Suggestions for future work can be stated as:

s The CPU time requirements of the code can further be reduced by employing

a table look-up algorithm in the matrix filling part of the code. This will also

allow solution of larger structures.

• Another extension which can make possible the analysis of even larger prob-

lems is the employment of inhomogeneous sectioning for different parts of the

antenna. The rectangular sectioning used in this work is homogeneous in the

sense that the grid lines are equidistant. This approach is very simple and easy

to implement as a computer code in terms of the identification of currents and

the symmetry search for the impedance matrix calculations. However, not all

parts of the antenna require the same grid for the same accuracy. For example,

in the feed part of a microstrlpline fed antenna, more sections are required for

both conductor and dielectric regions since the field is varying rapidly. Solution

accuracy in this part of the antenna has a more important effect on the overall
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solution comparedto the sectionsfarther away in the tapered region, since the

wavelength in the slotline becomes larger. The same considerations also apply

to the segments right near the taper and away from it. Therefore, the use of

smaller sections in the feed part of the antenna and in the regions neighboring

the taper, and larger sections elsewhere will yield smaller matrix sizes com-

pared to homogeneous sectioning. However, the effect of this approach on the

overail impedance matrix firing time should be studied.

• Only LTSA's are considered in this work. However, the developed model can

be extended to handle other antenna structures as weU. A naturai extension of

this work would be to analyze exponentiaily tapered slot antennas which have

similar characteristics to the LTSA. A comparison between the two antennas

with a parametric study (such as the one carried out in this work) would be very

useful to the designers in the field. In particular, the cross-polarization level

comparison can be very important, since the cross-polarization of the LTSA

is quite high. Another modified structure of interest is a bi-slotUne antenna

which consists of two conducting sheets each having the same geometry as the

single TSA, separated by a dielectric stub. This antenna can also be fed by

a microstripline-to-bi-slotline transition. However, since the microstrip feed

is contained in the structure, better sidelobe and and cross-polarization levels

can be obtained.
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• Finally, with further modifications, the code can be specialized to other an-

tenna types such as printed bi-conical antennas (provided that the antenna

edges make small angles), and microstrip antennas.
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